metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

[μ -1,3-Bis(3,5-dimethyl-1*H*-pyrazol-1-yl- κN^2)propan-2-olato- $\kappa^2 O$:*O*]bis[(ethanol- κO)zinc(II)] bis(perchlorate)

Da-Min Tian^a* and Chong-Yu Shi^b

^aDepartment of Chemistry and Chemical Engineering, Henan University of Urban Construction, Pingdingshan, Henan 467044, People's Republic of China, and ^bZhongzhou University, Zhongzhou 450044, People's Republic of China Correspondence e-mail: tiandamin2009@163.com

Received 22 October 2010; accepted 2 November 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.030; wR factor = 0.083; data-to-parameter ratio = 14.0.

centrosymmetric dinuclear title complex, In the $[Zn_2(C_{13}H_{19}N_4O)_2(C_2H_5OH)_2](ClO_4)_2$, the Zn^{II} atom is in a distorted trigonal-bipyramidal coordination geometry. The equatorial plane is constructed by one N atom and one O atom 1,3-bis(3,5-dimethylpyrazol-1-yl)propan-2-olate from two (bppo) ligands and one O atom from an ethanol molecule. One N atom and one O atom from the two bppo ligands occupy the axial positions. Intermolecular $O-H \cdots O$ hydrogen bonds between the ethanol molecules and perchlorate anions, and $O \cdot \cdot \pi$ interactions between the perchlorate anions and pyrazole rings $[O \cdot \cdot \cdot centroid distances = 3.494 (3)]$ and 3.413 (3) Å], lead to a chain structure along [010].

Related literature

For related structures, see: Montoya et al. (2007).

Experimental

Crystal data [Zn₂(C₁₃H₁₉N₄O)₂(C₂H₆O)₂]-(ClO₄)₂

 $M_r = 916.42$ Triclinic, $P\overline{1}$

	$V = 987.8 (5) \text{ Å}^{3}$ Z = 1 Mo K\alpha radiation $\mu = 1.42 \text{ mm}^{-1}$ T = 293 K $0.22 \times 0.20 \times 0.20 \text{ mm}$
Data collection	
Bruker APEX CCD diffractometer Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996) $T_{min} = 0.765, T_{max} = 0.765$	7788 measured reflections 3482 independent reflections 3172 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.017$
Refinement	
$P[P^2 = 2 + (P^2)] = 0.020$	0

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.030 & 2 \text{ restraints} \\ wR(F^2) &= 0.083 & H\text{-atom parameters constrained} \\ S &= 1.07 & \Delta\rho_{\text{max}} &= 0.50 \text{ e} \text{ Å}^{-3} \\ 3482 \text{ reflections} & \Delta\rho_{\text{min}} &= -0.22 \text{ e} \text{ Å}^{-3} \\ 249 \text{ parameters} \end{split}$$

Table 1 Selected bond lengths (Å).

	8		
Zn1-N1	2.076 (2)	Zn1-O6 ⁱ	2.0428 (16)
Zn1-N3 ⁱ	2.042 (2)	Zn1-O7	2.1292 (18)
Zn1-O6	1.9908 (16)		

Symmetry code: (i) -x + 1, -y, -z.

Table 2			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O7−H7 <i>A</i> ···O3	0.85	2.03	2.860 (3)	165

Data collection: *SMART* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008) and *DIAMOND* (Brandenburg, 1999); software used to prepare material for publication: *SHELXTL*.

We are grateful for support from Henan University of Urban Construction.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2370).

References

Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Montoya, V., Pons, J., Garcia-Antón, J., Solans, X., Font-Bardia, M. & Ros, J. (2007). Inorg. Chim. Acta, 360, 625–637.

Sheldrick, G. M. (1996). *SADABS*. University of Göttingen, Germany. Sheldrick, G. M. (2008). *Acta Cryst*. A64, 112–122.

Acta Cryst. (2010). E66, m1520 [doi:10.1107/S160053681004479X]

$[\mu$ -1,3-Bis(3,5-dimethyl-1*H*-pyrazol-1-yl- κN^2)propan-2-olato- $\kappa^2 O:O$]bis[(ethanol- κO)zinc(II)] bis(perchlorate)

D.-M. Tian and C.-Y. Shi

Comment

Pyrazole-derived ligands have been extensively studied in recent years. These ligands are known as anionic or neutral groups to coordinate to metal centers through N atoms in monodentate and exobidentate modes. It is essential to study the syntheses and crystal structures of the complexes formed by pyrazole systematically, and to inquire into the factors that influence the formation and structure of such complexes. Such studies may lead to the design and synthesis of functional materials, and also provide a theoretical foundation for supramolecular chemistry and crystal engineering (Montoya *et al.*, 2007). As part of our studies on the synthesis and characterization of these compounds, we report here the synthesis and crystal structure of the title compound.

In the title compound (Fig. 1), the Zn^{II} atom is five-coordinated by two O atoms and two N atoms from two 1,3bis(3,5-dimethyl-pyrazol-1-yl)propan-2-olate (bppo) ligands and one O atom from an ethanol molecule in a distorted trigonal–bipyramidal geometry (Table 1). The equatorial plane is constructed by N3ⁱ and O6 from the two bppo ligands and O7 from the ethanol molecule. The N1 and O6ⁱ atoms occupy the axial positions [symmetry code: (i) 1 - x, -y, -z]. Two hydroxyl O atoms bridge the Zn atoms, forming a dinuclear complex. Intermolecular O—H···O hydrogen bonds between the ethanol molecules and perchlorate anions (Table 2) and O··· π interactions between the perchlorate anions and pyrazole rings, O2···*Cg*1ⁱⁱ and O3···*Cg*2, [*Cg*1 and *Cg*2 are the centroids of C2/C3/C4/N3/N4 ring and C6/C7/C8/N1/N2 ring; symmetry code: (ii) x, -1 + y, z; O—centroid distances = 3.494 (3) and 3.413 (3) Å, respectively], lead to a chain structure along [010] (Fig. 2).

Experimental

1,3-Bis(3,5-dimethyl-pyrazol-1-yl)propan-2-ol and ZnCl₂.6H₂O were available commercially and were used without further purification. 1,3-Bis(3,5-dimethyl-pyrazol-1-yl)propan-2-ol (124 mg, 0.5 mmol) were dissolved in anhydrous alcohol (15 ml). To this solution was added ZuCl₂.6H₂O (122 mg, 0.5 mmol) in anhydrous alcohol (10 ml). After keeping the resulting solution in air to evaporate about half of the solvent, blue prismatic crystals of the title compound were formed. The crystals were isolated, washed with alcohol three times and dried in a vacuum desiccator using silica gel (yield: 75%). Analysis, calculated for $C_{30}H_{50}Cl_2N_8O_{12}Zn_2$: C 39.32, H 5.50, N, 12.23%; found: C 39.42, H 5.28, N 12.35%.

Refinement

H atoms on C atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93–0.98 Å and $U_{iso}(H)$ = 1.2(1.5 for methyl) $U_{eq}(C)$. Hydroxy H atom was located in a difference Fourier map and refined as a riding atom, with O—H = 0.85 Å and $U_{iso}(H)$ = 1.5 $U_{eq}(O)$. Figures

Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity. [Symmetry code: (A) 1 - x, -y, -y

$[\mu-1,3-Bis(3,5-dimethyl-1H-pyrazol-1-yl-\kappa N^2) propan-2-olato-\kappa^2O:O] bis[(ethanol-\kappa O)zinc(II)] bis(perchlorate) bis(perch$

Crystal data

$[Zn_2(C_{13}H_{19}N_4O)_2(C_2H_6O)_2](ClO_4)_2$	Z = 1
$M_r = 916.42$	F(000) = 476
Triclinic, <i>P</i> T	$D_{\rm x} = 1.541 { m Mg m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 8.8570 (18) Å	Cell parameters from 2230 reflections
b = 11.148 (2) Å	$\theta = 2.3 - 25.7^{\circ}$
c = 11.300 (2) Å	$\mu = 1.42 \text{ mm}^{-1}$
$\alpha = 111.13 \ (3)^{\circ}$	T = 293 K
$\beta = 100.40 \ (3)^{\circ}$	Block, colourless
$\gamma = 100.11 \ (3)^{\circ}$	$0.22\times0.20\times0.20\ mm$
$V = 987.8 (5) \text{ Å}^3$	

Data collection

Bruker APEX CCD diffractometer	3482 independent reflections
Radiation source: fine-focus sealed tube	3172 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.017$
ϕ and ω scans	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 3.3^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -10 \rightarrow 10$
$T_{\min} = 0.765, T_{\max} = 0.765$	$k = -13 \rightarrow 13$
7788 measured reflections	$l = -13 \rightarrow 13$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.030$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.083$	H-atom parameters constrained
<i>S</i> = 1.07	$w = 1/[\sigma^2(F_o^2) + (0.0486P)^2 + 0.4173P]$ where $P = (F_o^2 + 2F_c^2)/3$
3482 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
249 parameters	$\Delta \rho_{max} = 0.50 \text{ e} \text{ Å}^{-3}$
2 restraints	$\Delta \rho_{min} = -0.22 \text{ e } \text{\AA}^{-3}$

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Zn1	0.44360 (3)	-0.13668 (2)	0.00434 (2)	0.03250 (11)
N1	0.3373 (2)	-0.18995 (19)	0.13387 (19)	0.0385 (4)
N2	0.3198 (2)	-0.09350 (19)	0.24246 (19)	0.0364 (4)
O6	0.40890 (17)	0.04471 (14)	0.07488 (15)	0.0331 (3)
07	0.6260 (2)	-0.21497 (19)	0.07459 (19)	0.0528 (5)
H7A	0.6208	-0.2359	0.1393	0.079*
C5	0.2447 (4)	-0.4353 (3)	0.0179 (3)	0.0597 (7)
H5A	0.2756	-0.4202	-0.0538	0.089*
H5B	0.1397	-0.4941	-0.0135	0.089*
H5C	0.3182	-0.4748	0.0544	0.089*
C6	0.2460 (3)	-0.3054 (2)	0.1218 (2)	0.0413 (5)
C7	0.1694 (3)	-0.2813 (3)	0.2213 (3)	0.0453 (6)
H7	0.0970	-0.3442	0.2334	0.054*
C8	0.2202 (3)	-0.1478 (3)	0.2983 (2)	0.0413 (5)
С9	0.1855 (4)	-0.0683 (3)	0.4239 (3)	0.0606 (8)
H9A	0.2773	-0.0431	0.4961	0.091*
H9B	0.0971	-0.1210	0.4368	0.091*
Н9С	0.1599	0.0104	0.4193	0.091*
C10	0.4166 (3)	0.0433 (2)	0.2899 (2)	0.0381 (5)
H10A	0.5279	0.0435	0.3030	0.046*
H10B	0.4016	0.0957	0.3743	0.046*
C11	0.3753 (3)	0.1084 (2)	0.1951 (2)	0.0331 (5)
H11	0.2605	0.0997	0.1770	0.040*
C13	0.7924 (3)	-0.1751 (4)	0.0899 (3)	0.0641 (8)
H13A	0.8108	-0.1760	0.0076	0.077*
H13B	0.8423	-0.2383	0.1110	0.077*
C14	0.8653 (5)	-0.0412 (4)	0.1945 (6)	0.1128 (18)
H14A	0.8059	0.0190	0.1808	0.169*
H14B	0.9729	-0.0113	0.1926	0.169*
H14C	0.8647	-0.0439	0.2783	0.169*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

0.4601 (3)	0.2576 (2)	0.2567 (2)	0.0367 (5)
0.4222	0.2976	0.1977	0.044*
0.4328	0.2998	0.3385	0.044*
0.7009 (2)	0.25422 (18)	0.17989 (19)	0.0366 (4)
0.6328 (2)	0.28347 (18)	0.28297 (18)	0.0359 (4)
0.7043 (4)	0.3867 (3)	0.5278 (3)	0.0630 (8)
0.6439	0.4506	0.5295	0.094*
0.8007	0.4283	0.5977	0.094*
0.6428	0.3136	0.5389	0.094*
0.7442 (3)	0.3366 (2)	0.3990 (2)	0.0437 (6)
0.8885 (3)	0.3381 (3)	0.3704 (3)	0.0501 (6)
0.9877	0.3674	0.4306	0.060*
0.9736 (3)	0.2689 (3)	0.1524 (3)	0.0614 (8)
0.9241	0.1944	0.0696	0.092*
1.0653	0.2525	0.1974	0.092*
1.0055	0.3479	0.1373	0.092*
0.8579 (3)	0.2875 (2)	0.2346 (3)	0.0433 (6)
0.7169 (4)	-0.2927 (3)	0.4897 (3)	0.1003 (9)
0.5741 (4)	-0.4532 (3)	0.2842 (4)	0.1233 (12)
0.6271 (4)	-0.2330 (3)	0.3209 (3)	0.0955 (9)
0.8318 (4)	-0.3383 (4)	0.3177 (3)	0.1242 (12)
0.68858 (8)	-0.33052 (6)	0.35237 (7)	0.05214 (18)
	0.4601 (3) 0.4222 0.4328 0.7009 (2) 0.6328 (2) 0.7043 (4) 0.6439 0.8007 0.6428 0.7442 (3) 0.8885 (3) 0.9877 0.9736 (3) 0.9241 1.0653 1.0055 0.8579 (3) 0.7169 (4) 0.5741 (4) 0.6271 (4) 0.8318 (4) 0.68858 (8)	0.4601 (3) $0.2576 (2)$ 0.4222 0.2976 0.4328 0.2998 $0.7009 (2)$ $0.25422 (18)$ $0.6328 (2)$ $0.28347 (18)$ $0.7043 (4)$ $0.3867 (3)$ 0.6439 0.4506 0.8007 0.4283 0.6428 0.3136 $0.7442 (3)$ $0.3366 (2)$ $0.8885 (3)$ $0.3381 (3)$ 0.9877 0.3674 $0.9736 (3)$ $0.2689 (3)$ 0.9241 0.1944 1.0653 0.2525 1.0055 0.3479 $0.8579 (3)$ $0.2875 (2)$ $0.7169 (4)$ $-0.2927 (3)$ $0.5741 (4)$ $-0.2330 (3)$ $0.8318 (4)$ $-0.3383 (4)$ $0.68858 (8)$ $-0.33052 (6)$	0.4601 (3) $0.2576 (2)$ $0.2567 (2)$ 0.4222 0.2976 0.1977 0.4328 0.2998 0.3385 $0.7009 (2)$ $0.25422 (18)$ $0.17989 (19)$ $0.6328 (2)$ $0.28347 (18)$ $0.28297 (18)$ $0.7043 (4)$ $0.3867 (3)$ $0.5278 (3)$ 0.6439 0.4506 0.5295 0.8007 0.4283 0.5977 0.6428 0.3136 0.5389 $0.7442 (3)$ $0.3366 (2)$ $0.3990 (2)$ $0.8885 (3)$ $0.3381 (3)$ $0.3704 (3)$ 0.9877 0.3674 0.4306 $0.9736 (3)$ $0.2689 (3)$ $0.1524 (3)$ 0.9241 0.1944 0.0696 1.0653 0.2525 0.1974 1.0055 0.3479 0.1373 $0.8579 (3)$ $0.2875 (2)$ $0.2346 (3)$ $0.7169 (4)$ $-0.2927 (3)$ $0.4897 (3)$ $0.5741 (4)$ $-0.4532 (3)$ $0.3209 (3)$ $0.8318 (4)$ $-0.3383 (4)$ $0.3177 (3)$ $0.68858 (8)$ $-0.33052 (6)$ $0.35237 (7)$

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn1	0.03703 (16)	0.02905 (16)	0.03013 (16)	0.00679 (10)	0.01162 (11)	0.01013 (11)
N1	0.0468 (11)	0.0325 (10)	0.0367 (11)	0.0091 (8)	0.0174 (9)	0.0121 (8)
N2	0.0422 (10)	0.0341 (10)	0.0325 (10)	0.0070 (8)	0.0130 (8)	0.0131 (8)
O6	0.0396 (8)	0.0292 (8)	0.0296 (8)	0.0076 (6)	0.0132 (6)	0.0099 (6)
O7	0.0477 (10)	0.0682 (12)	0.0590 (12)	0.0215 (9)	0.0158 (9)	0.0403 (10)
C5	0.078 (2)	0.0344 (14)	0.0638 (19)	0.0087 (13)	0.0274 (16)	0.0154 (13)
C6	0.0462 (13)	0.0354 (13)	0.0418 (14)	0.0060 (10)	0.0114 (11)	0.0175 (11)
C7	0.0459 (13)	0.0442 (14)	0.0467 (15)	0.0021 (11)	0.0137 (11)	0.0231 (12)
C8	0.0449 (13)	0.0474 (14)	0.0365 (13)	0.0088 (10)	0.0155 (10)	0.0218 (11)
С9	0.0747 (19)	0.0637 (18)	0.0458 (16)	0.0113 (15)	0.0313 (15)	0.0207 (14)
C10	0.0417 (12)	0.0356 (12)	0.0318 (12)	0.0043 (9)	0.0096 (10)	0.0104 (10)
C11	0.0325 (11)	0.0335 (11)	0.0330 (12)	0.0086 (9)	0.0139 (9)	0.0105 (9)
C13	0.0497 (16)	0.099 (3)	0.066 (2)	0.0353 (16)	0.0243 (15)	0.0470 (19)
C14	0.068 (2)	0.086 (3)	0.177 (5)	0.002 (2)	-0.007 (3)	0.072 (3)
C12	0.0416 (12)	0.0318 (12)	0.0366 (13)	0.0108 (9)	0.0159 (10)	0.0107 (10)
N3	0.0364 (10)	0.0339 (10)	0.0340 (10)	0.0066 (8)	0.0112 (8)	0.0079 (8)
N4	0.0401 (10)	0.0319 (10)	0.0304 (10)	0.0054 (8)	0.0095 (8)	0.0082 (8)
C1	0.080 (2)	0.0609 (18)	0.0336 (15)	0.0046 (15)	0.0084 (14)	0.0131 (13)
C2	0.0550 (15)	0.0314 (12)	0.0344 (13)	0.0021 (10)	0.0037 (11)	0.0098 (10)
C3	0.0450 (14)	0.0431 (14)	0.0467 (16)	0.0014 (11)	-0.0047 (12)	0.0134 (12)
C15	0.0406 (14)	0.0656 (19)	0.075 (2)	0.0121 (13)	0.0207 (14)	0.0229 (16)
C4	0.0392 (12)	0.0352 (13)	0.0489 (15)	0.0062 (10)	0.0078 (11)	0.0133 (11)

O1 O2	0.135 (2) 0.125 (2)	0.135 (3) 0.0526 (16)	0.0666 (17) 0.163 (3)	0.065 (2) -0.0057 (15)	0.0451 (17) 0.031 (2)	0.0586 (18) 0.0271 (18)
O3	0.140 (2)	0.0671 (16)	0.0824 (18)	0.0311 (16)	0.0106 (17)	0.0403 (14)
O4	0.088 (2)	0.178 (3)	0.116 (3)	0.040 (2)	0.0609 (19)	0.051 (2)
Cl1	0.0664 (4)	0.0457 (4)	0.0509 (4)	0.0129 (3)	0.0249 (3)	0.0234 (3)
Geometric parar	neters (Å, °)					
Zn1—N1		2.076 (2)	C11-	-H11	0.98	300
Zn1—N3 ⁱ		2.042 (2)	C13—	-C14	1.40	68 (6)
Zn1—06		1.9908 (16)	C13—	-H13A	0.97	700
Zn1—O6 ⁱ		2.0428 (16)	C13—	-H13B	0.97	700
Zn1—O7		2.1292 (18)	C14—	-H14A	0.90	500
Zn1—Zn1 ⁱ		3.0784 (9)	C14—	-H14B	0.90	500
N1—C6		1.340 (3)	C14—	-H14C	0.90	500
N1—N2		1.364 (3)	C12—	-N4	1.40	60 (3)
N2—C8		1.353 (3)	C12—	-H12A	0.9	700
N2—C10		1.461 (3)	C12—	-H12B	0.97	700
O6—C11		1.401 (3)	N3—	24	1.34	41 (3)
O6—Zn1 ⁱ		2.0428 (16)	N3—]	N4	1.3	70 (3)
O7—C13		1.422 (3)	N3—2	Zn1 ⁱ	2.04	42 (2)
O7—H7A		0.8500	N4—4	22	1.34	46 (3)
C5—C6		1.496 (4)	C1—0	22	1.49	91 (4)
C5—H5A		0.9600	C1—I	H1A	0.90	500
C5—H5B		0.9600	C1—I	H1B	0.90	500
C5—H5C		0.9600	C1—I	H1C	0.90	500
C6—C7		1.385 (4)	C2—0	23	1.3	72 (4)
C7—C8		1.366 (4)	C3—0	24	1.38	35 (4)
C/—H/		0.9300	C3—I	13	0.9.	300
C8-C9		1.497 (4)	C15-	-C4	1.49	95 (4)
С9—Н9А		0.9600	C15—	-ПІЗА Ц15D	0.90	500
C9—H9B		0.9000	C15	-115D H15C	0.90	500
C_{10}		1 522 (3)	01-0	-1115C	1.4	14 (3)
C10—H10A		0.9700	02-0	-11 -11	1.4	(3)
C10—H10B		0.9700	03-0		1.42	22(3)
C11—C12		1.534 (3)	04—0	C11	1.40)2 (3)
O6—Zn1—N3 ⁱ		112.71 (8)	C10—	-C11—C12	111	.32 (19)
O6—Zn1—O6 ⁱ		80.52 (7)	O6—4	С11—Н11	107	.6
N3 ⁱ —Zn1—O6 ⁱ		89.87 (7)	C10-	-C11—H11	107	.6
O6—Zn1—N1		91.69 (7)	C12—	-C11—H11	107	.6
N3 ⁱ —Zn1—N1		106.21 (8)	07—0	C13—C14	111	.5 (3)
O6 ⁱ —Zn1—N1		163.86 (7)	07—0	С13—Н13А	109	.3
O6—Zn1—O7		130.72 (8)	C14—	-C13—H13A	109	.3
N3 ⁱ —Zn1—O7		115.77 (8)	O7—0	С13—Н13В	109	.3
O6 ⁱ —Zn1—O7		91.14 (7)	C14—	-C13—H13B	109	.3

N1—Zn1—O7	83.23 (8)	H13A—C13—H13B	108.0
O6—Zn1—Zn1 ⁱ	40.88 (4)	C13—C14—H14A	109.5
$N3^{i}$ —Zn1—Zn1 ⁱ	104.37 (6)	C13—C14—H14B	109.5
$O6^{i}$ Zn1 Zn1 ⁱ	39.63 (4)	H14A—C14—H14B	109.5
$N1 - Zn1 - Zn1^{i}$	131.04 (6)	C13—C14—H14C	109.5
07 $7\pi^{1}$ $7\pi^{1^{i}}$	115 79 (6)	$H_{14} - C_{14} - H_{14} C_{14}$	109.5
$C_{1} = 2 \Pi = 2 \Pi \Gamma$	106 23 (10)	H14B C14 H14C	109.5
C6 = N1 = 7n1	132.19(16)	N4_C12_C11	109.3 112.81 (18)
$N_2 = N_1 = Z_{n_1}$	132.13(10) 110.85(14)	N4 = C12 = C11 N4 = C12 = H12A	100.0
$N_2 = N_1 = \Sigma_{111}$	119.85 (14)	11 - 012 - 112A	109.0
C_{0} N2 C_{10}	110.49(19) 120 5 (2)	N4 C12 H12R	109.0
$N_1 = N_2 = C_{10}$	129.3(2)	$\mathbf{N} = \mathbf{C} 1 2 = \mathbf{M} 1 2 \mathbf{D}$	109.0
N1 - N2 - C10	119.08 (18)		109.0
	120.96(13)	$\frac{112}{12} - \frac{112}{12} - \frac{112}{12} $	107.0
C11—O6—Zn1 ²	124.07 (13)	:	105.54 (19)
$Zn1$ — $O6$ — $Zn1^{1}$	99.48 (7)	$C4$ — $N3$ — $Zn1^{1}$	134.36 (17)
C13—O7—Zn1	128.78 (17)	N4—N3—Zn1 ⁱ	117.88 (14)
С13—О7—Н7А	103.2	C2—N4—N3	111.10 (19)
Zn1—O7—H7A	118.4	C2—N4—C12	129.4 (2)
С6—С5—Н5А	109.5	N3—N4—C12	119.52 (18)
С6—С5—Н5В	109.5	C2-C1-H1A	109.5
H5A—C5—H5B	109.5	C2-C1-H1B	109.5
С6—С5—Н5С	109.5	H1A—C1—H1B	109.5
H5A—C5—H5C	109.5	C2-C1-H1C	109.5
H5B—C5—H5C	109.5	H1A—C1—H1C	109.5
N1—C6—C7	109.4 (2)	H1B—C1—H1C	109.5
N1—C6—C5	121.1 (2)	N4—C2—C3	106.6 (2)
C7—C6—C5	129.4 (2)	N4—C2—C1	122.5 (2)
C8—C7—C6	107.2 (2)	C3—C2—C1	130.8 (2)
С8—С7—Н7	126.4	C2—C3—C4	106.8 (2)
С6—С7—Н7	126.4	С2—С3—Н3	126.6
N2—C8—C7	106.7 (2)	С4—С3—Н3	126.6
N2—C8—C9	123.0 (2)	C4—C15—H15A	109.5
C7—C8—C9	130.2 (2)	C4—C15—H15B	109.5
С8—С9—Н9А	109.5	H15A—C15—H15B	109.5
С8—С9—Н9В	109.5	C4—C15—H15C	109.5
Н9А—С9—Н9В	109.5	H15A—C15—H15C	109.5
С8—С9—Н9С	109.5	H15B—C15—H15C	109.5
Н9А—С9—Н9С	109.5	N3—C4—C3	109.9 (2)
Н9В—С9—Н9С	109.5	N3—C4—C15	121.5 (2)
N2—C10—C11	112.67 (19)	C3—C4—C15	128.6 (2)
N2—C10—H10A	109.1	O2—Cl1—O4	110.6 (2)
C11—C10—H10A	109.1	O2—Cl1—O1	110.3 (2)
N2—C10—H10B	109.1	O4—Cl1—O1	109.0 (2)
C11—C10—H10B	109.1	O2—Cl1—O3	107.9 (2)
H10A—C10—H10B	107.8	O4—Cl1—O3	110.9 (2)
O6—C11—C10	111.91 (18)	O1—Cl1—O3	108.07 (18)
O6—C11—C12	110.58 (18)		(-)

O6—Zn1—N1—C6	144.8 (2)	C10—N2—C8—C7	-174.6 (2)
N3 ⁱ —Zn1—N1—C6	30.5 (2)	N1—N2—C8—C9	176.0 (2)
O6 ⁱ —Zn1—N1—C6	-154.6 (2)	C10—N2—C8—C9	3.1 (4)
O7—Zn1—N1—C6	-84.4 (2)	C6—C7—C8—N2	2.3 (3)
Zn1 ⁱ —Zn1—N1—C6	157.08 (19)	C6—C7—C8—C9	-175.3 (3)
O6—Zn1—N1—N2	-18.00 (17)	C8—N2—C10—C11	-120.3 (3)
$N3^{i}$ —Zn1—N1—N2	-132.25 (17)	N1—N2—C10—C11	67.4 (3)
O6 ⁱ —Zn1—N1—N2	42.6 (3)	Zn1—O6—C11—C10	17.7 (2)
O7—Zn1—N1—N2	112.83 (18)	Zn1 ⁱ —O6—C11—C10	-122.81 (16)
$Zn1^{i}$ — $Zn1$ — $N1$ — $N2$	-5.7 (2)	Zn1—O6—C11—C12	142.41 (15)
C6—N1—N2—C8	0.5 (3)	Zn1 ⁱ —O6—C11—C12	1.9 (2)
Zn1—N1—N2—C8	167.30 (16)	N2-C10-C11-O6	-64.4 (2)
C6—N1—N2—C10	174.2 (2)	N2-C10-C11-C12	171.27 (17)
Zn1—N1—N2—C10	-19.0 (3)	Zn1—O7—C13—C14	67.8 (4)
N3 ⁱ —Zn1—O6—C11	126.18 (16)	O6—C11—C12—N4	-60.2 (2)
O6 ⁱ —Zn1—O6—C11	-147.97 (19)	C10-C11-C12-N4	64.9 (2)
N1—Zn1—O6—C11	17.82 (17)	C4—N3—N4—C2	1.5 (2)
O7—Zn1—O6—C11	-64.70 (18)	Zn1 ⁱ —N3—N4—C2	166.94 (15)
Zn1 ⁱ —Zn1—O6—C11	-147.97 (19)	C4—N3—N4—C12	-179.55 (19)
$N3^{i}$ —Zn1—O6—Zn1 ⁱ	-85.85 (8)	Zn1 ⁱ —N3—N4—C12	-14.1 (2)
$O6^{i}$ —Zn1—O6—Zn1 ⁱ	0.0	C11—C12—N4—C2	-111.0 (3)
N1—Zn1—O6—Zn1 ⁱ	165.79 (8)	C11—C12—N4—N3	70.2 (3)
O7—Zn1—O6—Zn1 ⁱ	83.27 (10)	N3—N4—C2—C3	-1.9 (3)
O6—Zn1—O7—C13	-62.0 (3)	C12—N4—C2—C3	179.3 (2)
N3 ⁱ —Zn1—O7—C13	106.8 (2)	N3—N4—C2—C1	175.6 (2)
O6 ⁱ —Zn1—O7—C13	16.4 (2)	C12—N4—C2—C1	-3.3 (4)
N1—Zn1—O7—C13	-148.4 (2)	N4—C2—C3—C4	1.5 (3)
Zn1 ⁱ —Zn1—O7—C13	-15.8 (2)	C1—C2—C3—C4	-175.6 (3)
N2—N1—C6—C7	1.0 (3)	N4—N3—C4—C3	-0.5 (3)
Zn1—N1—C6—C7	-163.53 (18)	$Zn1^{i}$ N3—C4—C3	-162.39 (18)
N2—N1—C6—C5	-175.6 (2)	N4—N3—C4—C15	179.5 (2)
Zn1—N1—C6—C5	20.0 (4)	Zn1 ⁱ —N3—C4—C15	17.6 (4)
N1—C6—C7—C8	-2.0 (3)	C2—C3—C4—N3	-0.7 (3)
C5—C6—C7—C8	174.1 (3)	C2—C3—C4—C15	179.4 (3)
N1—N2—C8—C7	-1.8 (3)		
Symmetry codes: (i) $-x+1$, $-y$, $-z$.			
Hydrogen-hond geometry $(\hat{A} \circ)$			
11, alogen bona geometry (21,)			

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
O7—H7A…O3	0.85	2.03	2.860 (3)	165

